3,309 research outputs found

    Growth models, random matrices and Painleve transcendents

    Full text link
    The Hammersley process relates to the statistical properties of the maximum length of all up/right paths connecting random points of a given density in the unit square from (0,0) to (1,1). This process can also be interpreted in terms of the height of the polynuclear growth model, or the length of the longest increasing subsequence in a random permutation. The cumulative distribution of the longest path length can be written in terms of an average over the unitary group. Versions of the Hammersley process in which the points are constrained to have certain symmetries of the square allow similar formulas. The derivation of these formulas is reviewed. Generalizing the original model to have point sources along two boundaries of the square, and appropriately scaling the parameters gives a model in the KPZ universality class. Following works of Baik and Rains, and Pr\"ahofer and Spohn, we review the calculation of the scaled cumulative distribution, in which a particular Painlev\'e II transcendent plays a prominent role.Comment: 27 pages, 5 figure

    Random walks and random fixed-point free involutions

    Full text link
    A bijection is given between fixed point free involutions of {1,2,...,2N}\{1,2,...,2N\} with maximum decreasing subsequence size 2p2p and two classes of vicious (non-intersecting) random walker configurations confined to the half line lattice points l1l \ge 1. In one class of walker configurations the maximum displacement of the right most walker is pp. Because the scaled distribution of the maximum decreasing subsequence size is known to be in the soft edge GOE (random real symmetric matrices) universality class, the same holds true for the scaled distribution of the maximum displacement of the right most walker.Comment: 10 page

    Increasing subsequences and the hard-to-soft edge transition in matrix ensembles

    Get PDF
    Our interest is in the cumulative probabilities Pr(L(t) \le l) for the maximum length of increasing subsequences in Poissonized ensembles of random permutations, random fixed point free involutions and reversed random fixed point free involutions. It is shown that these probabilities are equal to the hard edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively. The gap probabilities can be written as a sum over correlations for certain determinantal point processes. From these expressions a proof can be given that the limiting form of Pr(L(t) \le l) in the three cases is equal to the soft edge gap probability for matrix ensembles with unitary, orthogonal and symplectic symmetry respectively, thereby reclaiming theorems due to Baik-Deift-Johansson and Baik-Rains.Comment: LaTeX, 19 page

    Symmetrized models of last passage percolation and non-intersecting lattice paths

    Get PDF
    It has been shown that the last passage time in certain symmetrized models of directed percolation can be written in terms of averages over random matrices from the classical groups U(l)U(l), Sp(2l)Sp(2l) and O(l)O(l). We present a theory of such results based on non-intersecting lattice paths, and integration techniques familiar from the theory of random matrices. Detailed derivations of probabilities relating to two further symmetrizations are also given.Comment: 21 pages, 5 figure

    Correlations in two-component log-gas systems

    Full text link
    A systematic study of the properties of particle and charge correlation functions in the two-dimensional Coulomb gas confined to a one-dimensional domain is undertaken. Two versions of this system are considered: one in which the positive and negative charges are constrained to alternate in sign along the line, and the other where there is no charge ordering constraint. Both systems undergo a zero-density Kosterlitz-Thouless type transition as the dimensionless coupling Γ:=q2/kT\Gamma := q^2 / kT is varied through Γ=2\Gamma = 2. In the charge ordered system we use a perturbation technique to establish an O(1/r4)O(1/r^4) decay of the two-body correlations in the high temperature limit. For Γ2+\Gamma \rightarrow 2^+, the low-fugacity expansion of the asymptotic charge-charge correlation can be resummed to all orders in the fugacity. The resummation leads to the Kosterlitz renormalization equations.Comment: 39 pages, 5 figures not included, Latex, to appear J. Stat. Phys. Shortened version of abstract belo

    Andreev reflection from a topological superconductor with chiral symmetry

    Get PDF
    It was pointed out by Tewari and Sau that chiral symmetry (H -> -H if e h) of the Hamiltonian of electron-hole (e-h) excitations in an N-mode superconducting wire is associated with a topological quantum number Q\in\mathbb{Z} (symmetry class BDI). Here we show that Q=Tr(r_{he}) equals the trace of the matrix of Andreev reflection amplitudes, providing a link with the electrical conductance G. We derive G=(2e^2/h)|Q| for |Q|=N,N-1, and more generally provide a Q-dependent upper and lower bound on G. We calculate the probability distribution P(G) for chaotic scattering, in the circular ensemble of random-matrix theory, to obtain the Q-dependence of weak localization and mesoscopic conductance fluctuations. We investigate the effects of chiral symmetry breaking by spin-orbit coupling of the transverse momentum (causing a class BDI-to-D crossover), in a model of a disordered semiconductor nanowire with induced superconductivity. For wire widths less than the spin-orbit coupling length, the conductance as a function of chemical potential can show a sequence of 2e^2/h steps - insensitive to disorder.Comment: 10 pages, 5 figures. Corrected typo (missing square root) in equations A13 and A1

    Finite N Fluctuation Formulas for Random Matrices

    Full text link
    For the Gaussian and Laguerre random matrix ensembles, the probability density function (p.d.f.) for the linear statistic j=1N(xj)\sum_{j=1}^N (x_j - ) is computed exactly and shown to satisfy a central limit theorem as NN \to \infty. For the circular random matrix ensemble the p.d.f.'s for the linear statistics 12j=1N(θjπ){1 \over 2} \sum_{j=1}^N (\theta_j - \pi) and j=1Nlog2sinθj/2- \sum_{j=1}^N \log 2|\sin \theta_j/2| are calculated exactly by using a constant term identity from the theory of the Selberg integral, and are also shown to satisfy a central limit theorem as NN \to \infty.Comment: LaTeX 2.09, 11 pages + 3 eps figs (needs epsf.sty

    An adjoint for likelihood maximization

    No full text
    The process of likelihood maximization can be found in many different areas of computational modelling. However, the construction of such models via likelihood maximization requires the solution of a difficult multi-modal optimization problem involving an expensive O(n3) factorization. The optimization techniques used to solve this problem may require many such factorizations and can result in a significant bottle-neck. This article derives an adjoint formulation of the likelihood employed in the construction of a kriging model via reverse algorithmic differentiation. This adjoint is found to calculate the likelihood and all of its derivatives more efficiently than the standard analytical method and can therefore be utilised within a simple local search or within a hybrid global optimization to accelerate convergence and therefore reduce the cost of the likelihood optimization

    Applications and generalizations of Fisher-Hartwig asymptotics

    Full text link
    Fisher-Hartwig asymptotics refers to the large nn form of a class of Toeplitz determinants with singular generating functions. This class of Toeplitz determinants occurs in the study of the spin-spin correlations for the two-dimensional Ising model, and the ground state density matrix of the impenetrable Bose gas, amongst other problems in mathematical physics. We give a new application of the original Fisher-Hartwig formula to the asymptotic decay of the Ising correlations above TcT_c, while the study of the Bose gas density matrix leads us to generalize the Fisher-Hartwig formula to the asymptotic form of random matrix averages over the classical groups and the Gaussian and Laguerre unitary matrix ensembles. Another viewpoint of our generalizations is that they extend to Hankel determinants the Fisher-Hartwig asymptotic form known for Toeplitz determinants.Comment: 25 page

    Variance Calculations and the Bessel Kernel

    Full text link
    In the Laguerre ensemble of N x N (positive) hermitian matrices, it is of interest both theoretically and for applications to quantum transport problems to compute the variance of a linear statistic, denoted var_N f, as N->infinity. Furthermore, this statistic often contains an additional parameter alpha for which the limit alpha->infinity is most interesting and most difficult to compute numerically. We derive exact expressions for both lim_{N->infinity} var_N f and lim_{alpha->infinity}lim_{N->infinity} var_N f.Comment: 7 pages; resubmitted to make postscript compatibl
    corecore